
Design and realization of random measurement scheme for
compressed sensing

*     This work has been supported by the National Natural Science Foundation of China (Nos.61072111 and 60672156), and the Project of Science and
Technology Commission of Jilin Province (Nos.20100503 and 20110360).

      **    E-mail: xcjciom@yahoo.com.cn

XIE Cheng-jun ** and XU Lin
Computer Science & Technology Institute, Beihua University, Jilin 132021, China

(Received 11 August 2011)
    Tianjin University of Technology and Springer-Verlag Berlin Heidelberg 2012C

Design and realization of random measurement scheme for compressed sensing (CS) are presented in this paper, and lower
limits of the measurement number are achieved when the precise reconstruction is realized. Four kinds of random measure-
ment matrices are designed according to the constraint conditions of random measurement. The performance is tested
employing the algorithm of stagewise orthogonal matching pursuit (StOMP). Results of the experiment show that lower
limits of the measurement number are much better than the results described in Refs.[13-15]. When the ratios of measure-
ment to sparsity are 3.8 and 4.0, the mean relative errors of the reconstructed signals are 8.57 10–13 and 2.43 10–14,
respectively, which confirms that the random measurement scheme of this paper is very effective.
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Compressed sensing (CS)[1] redefines the limits deduced from
Shannon’s theorem and Nyquist sampling frequency. CS
theory brings the reform of signal sampling theory, and it is
hoped to have wide application prospects[2]. A much lower
coding rate can be achieved with the help of CS[3]. A single-
pixel camera is bought to birth by Baraniuk et al[4]. The two
important improvements brought by CS in radar imaging filed
should be: the pulse compression match filter can be omitted
at the receiving end, and thanks to the avoidance of a direct
sampling of the original signal, the bandwidth requirement of
the analog to digital converter (ADC) can be lowered[5]. The
CS theory is used in the acquirement of the data of synthetic
aperture radar images[6], which greatly lowers the calculation
cost of satellite image processing. Compressed sensing is also
used in medical imaging field, like sparse magnetic resonance
(MR) imaging[7], and 3D magnetic resonance spectroscopic
imaging (MRSI)[8]. Compared with traditional uniform sam-
pling process, the reconstruction precision of CS is better
when the sampling randomization is implemented more
thoroughly, and the reconstruction quality should be better
in the favor of a better reconstruction algorithm. The design
of random measurement scheme should be the critical step
for compressed sensing coding, as well as for increasing the
efficiency of sampling compression, and a measurement
scheme that is easy for hardware realization is also a key
factor for its practical application. In this paper, the random

measurement matrix is designed according to the
constraint conditions of random measurement and lower lim-
its of the measurement number for a precise reconstruction,
and simultaneously the stagewise orthogonal matching pur-
suit (StOMP) is used in the signal reconstruction simulation
to confirm the rightness and effectiveness of our random mea-
surement scheme.

There are principally three stages in CS: signal sparseness,
random measurement and reconstruction. Assume that the
original signal is NRz , in which N is the length of the
signal, and  is the sparseness expression of zxz , . The
goal of the random measurement lies in acquiring observables
whose number is M (M << N). y = x = z, MRy . NMR
is the random measurement matrix. Since M<<N, y= x= z
should be underdetermined, and the multiple resolutions exist.
x can be got from
      min || x ||0   s.t.  y = x .                                                  (1)
But the optimization problem in Eq.(1) is NP one, so it can
be converted to l1 convex set optimization problem[9]

      min || x ||1   s.t.   y = x .                                                  (2)
The StOMP algorithm is used here to solve Eq.(2) to get

x, and then the original signal z is got through the reverse
process of sparseness.

Here, we construct a random measurement matrix
NMR . Employing y = x, we can obtain the measure-

ment value yi , whose number is M. Here each line of  can
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where the sampling factor is )1/log( KNC .
According to the above requirements of measurement

matrix, the design method of random measurement matrix is
implemented by designing a pseudo random noise matrix first,
which means the M N random variables with independent
distribution are taken as the elements of the matrix. This kind
of measurement matrix , which is characterized by random
and arbitary fixed sparse matrix , can ensure that   meets
the constraints in large probability. In the following part, 4
kinds of specific designs of measurement matrix will be
considered.

Using the uniform random projection measurement ma-
trix 1, the concrete implementation includes generating a
random matrix A for given row and column (m, n). Then an
SVD decomposition is applied on A, and we have A=USVT.
Let = VT, and the Euclidean normalization is implemented
for every column of the measurement matrix , and then the
uniform random projection measurement matrix has been got
now, e.g.,

                                       ,                                                   (3)

                                ,                                                         (4)

                                              ,                                           (5)

1791.06365.02753.02136.0
7168.04861.07586.07829.0
9554.02930.09265.06500.0

A

Using the Euclidean normalized random measurement
matrix 2, the concrete implementation includes generating
a random matrix for given row and column (m,n). Then the
Euclidean normalized measurement matrix is got, which
is the simplest and the most direct way to generate the ran-
dom measurement matrix.

Using the random measurement matrix 3 based on fast
Fourier transform (FFT), FFT can be expressed as F=Wf,  in
which .1,0,e1 2j

, Nni
N

N
ni

inW  The generating steps

of the random measurement matrix are as follows: generate
a standard matrix Q of the pseudo random uniform distrib-
uted sequence; employ Q to realize the core position exchange
of Fourier transform; generate a standard matrix P of the
pseudo random uniform distributed sequence; use P to real-
ize the core position exchange of Fourier transform, and we
have = PFQ; implement Euclidean normalization for ev-
ery column of the measurement matrix  to get the random
measurement matrix.

Using the symbolic random measurement matrix 4 , the
concrete implementation includes generating a +/- symbolic
matrix for given row and column(m,n). Then every column
of the matrix is normalized, and we have the symbolic mea-
surement matrix.

In this paper the StOMP algorithm is used to realize re-
construction of the measurement data to testify the correct-
ness and effectiveness of the random measurement scheme.
At the same time, four kinds of random measurement matri-
ces are compared and analyzed. Segmentation is mentioned
in condition that s is given. The StOMP algorithm is then
implemented in stage s to build an approximate sequence (x1, ,
xs ) from a residual vector sequence (r1, r2, ) employing a
structure that aims at removing residual, mark coordinate
values of the non-zero elements of xs with Is. The initial solu-
tion is x0 = 0, and I0 is blank. The concrete steps of  the StOMP
algorithm are as follows:
Step1: Set up the maximal step for iteration, and solve the
maximal iteration error e, s=1;
Step2: Implement random measurement for wavelet sparse
matrix y, and the following equation is then derived: s =

T rs-1;

be taken as a sensor, and multiply it with the signal, so the
random projection can keep the essential information of the
original signal.The core of CS is a non-correlated measure-
ment process, which is different from uniform sampling, and
the measurement approach is non-adaptivity, which means
that the design of the measurement matrix doesn’t depend on
the original signal x. The constraints of the measurement ma-
trix are as follows: designs of  should follow uniform un-
certainty principle (UUP) [10]; designs of  should meet re-
stricted isometry property (RIP)[11]; designs of  should meet
incoherence between sparseness matrix  and random mea-
surement matrix [12].

For a certain K, if M satisfies certain condition, the prob-
ability of achieving precise reconstruction is really high. In
CS process, the measurement number for reconstruction
greatly affects the quality of the reconstructed image, while
the quality of the reconstructed image almost has nothing to
do with the specific measurement value. That is to say, every
measurement value contributes to reconstruction with the
same power, and the precision of reconstruction largely de-
pends on the measurement number. Generally speaking, lower
limits of measurement number M for precise reconstruction
are given by the following expression:

3644.03520.05638.0
1603.09221.03303.0
2864.01583.05795.0
8715.09265.04870.0

V

4808.01615.04303.08726.0
4643.09291.07586.00296.0
7438.03328.08708.04876.0

.
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Step3 : Implement normalization for s: /)()( ini ss

l

s i
1

2))(( , in which l is the signal length of s ;

Step4: Implement threshold processing for :|{: jss

};|)( ss j
Step5: Combine the newest two coordinate indices, and imple-
ment uniformization for set Is , and then the following equa-
tion is tenable: sss II U1

Step6: Solve the linear equations: min (|| xs ||1), s.t. y = xs,
and calculate: (xs)IS

=( Is Is
)-1 T

Is
y;

Step7: Calculate the residual part: rs=y xs ;
Step8: Decide the precision of spare solution: if rs<e, end,
and we have x0 =xs; otherwise s=s +1, and return to Step3.

To evaluate the signal reconstruction quality, here the fre-
quently-used relative error analyzing method is employed.
The relative error can be expressed as: error ,||||/||ˆ|| 22 xxx  and
we take e

_
 as the average error of 10 times of reconstructions.

To conveniently compare with other scholars, experimen-
tal results, in this paper the following signal is used to gener-
ate available original test data:

z=sin (10t + /4) +sin (2t + /6) + sin (t + /8) .         (6)

x=[z(1:K); zeros (N K, 1)] ,                                         (7)
To obtain (K  sparse signal), the following form is used

where an available signal with length K can be generated,
while other elements of the test signal are zero. Tab.1 shows
the results.
Tab.1 Reconstructed signals using different  measure-
ment matrices and M values
   (a) M = 150, N = 1000, K = 50, M / K = 3.0, M / K log (N / K) = 1.001
  Measurement matrix 1 2 3 4

e
_

  2.58             9.51             3.26            8.79
  (b) M = 170, N = 1000, K = 50, M / K = 3.4, M / K log (N / K) = 1.135
  Measurement matrix 1 2 3 4

e
_

4.42e 12           4.46         1.45e 12        2.77
  (c) M = 190, N = 1000, K = 50, M / K = 3.8, M / K log (N / K) = 1.268
  Measurement matrix 1 2 3 4

e
_

1.16e 13       3.38e 12    1.03e 13    1.72e 13
  (d) M = 200, N = 1000, K = 50, M / K = 4.0, M / K log (N / K) = 1.335
  Measurement matrix 1 2 3 4

              e
_

  1.14e 14       3.52e 14    9.72e 15    4.07e 14

From Tab.1 we can see that the measurement matrix de-
sign of this paper fully meets the lower limit requirements of
the  precise reconstruction. Still it is far superior to lower
limit condition described in Refs.[13-15]. Based on the data
in Tab.1, using the sampling factor C and Eqs.(3-5), it can be
concluded that M 456, M 345 and M 736. The ac-
quired data shows that the three formulas result in rather strict
limiting conditions, and a relative error of 1.0e-8 can be con-
sidered as the standard of a precise reconstruction. Accord-
ing to the experiment data in Tab.l, take M 190, and then
the precise reconstruction requirement can be met. Since the
specific reconstruction algorithm is StOMP, the introduced
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reconstruction difference needs to be considered. From a
whole view of the compressed sensing process, the random
measurement results in not all of the signals need to be
measured, which means that the positions of important coef-
ficients are not of importance. In addition, the decoding end
is rather robust to missing signals. Since every random mea-
surement coefficient has the same importance, there should
be less influence even if any loss happens, which is the greatest
advantage of random measurement with compressed sensing.

Different random measurement matrices can bring great
influence on the quality of reconstructed signal. The mea-
surement matrix design shouldn’t break the constraints. The
lower limit of measurement number should vary according
to different random measurement matrices and reconstruc-
tion algorithms. The random measurement matrix should be
chosen according to specific application environment.
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